2017云南公务员考试行测技巧:如何巧解方阵问题
本期为各位考生带来了2017云南公务员考试行测技巧:如何巧解方阵问题。相信行测考试一定是很多考生需要努力攻克的一道坎儿。行测中涉及的知识面之广,考点之细,需要开始做到在积累的同时掌握一定的解题技巧。云南公务员考试网温馨提示考生阅读下文,相信能给考生带来一定的帮助。
更多云南公务员考试复习技巧详见 2017年云南公务员考试用书
仔细研读下文>>>2017云南公务员考试行测技巧:如何巧解方阵问题
行测中的数量关系题着实让多数考生头疼,看似都会做,却非常耗时间。从解题本质上来讲,当中有许多题目还是很有解题思维和对应的固定解题方式在的,也是有一定的方法和技巧的,并且从难度上来讲也不是很难,而且当各位考生掌握了这些题目的技巧,必定能够更好的把题目解出来。教育专家认为,方阵的题目就属于这样的一类题目。
一、什么是方阵问题:
这是一类横竖排问题,横着排称为行,竖着排称为列。如行数与列数相等,则正好排成一个正方形,此图形被称为方阵。对于方阵问题,是这样定义的:士兵排队,横着排叫行,竖着排叫列,若行数与列数都相等,正好排成一个正方形,这就是一个方队,这种方队也叫做方阵。
二、方阵问题的具体特点:
(1)方阵不论哪一层,每边上的人(或物)数量都相同,每向里一层,每边上的人数就少2人;
(2)每边人(或物)数和四周人(或物)的关系:四周人(或物)数=[每边人(或物)数-1]×4;
(3)实心方阵的总人数(或物)=每边人(或物)数×每边人(或物)数;
(4)空心方阵的总人(或物)数=(最外层每边人(或物)数-空心方阵的层数)×空心方阵的层数×4。
三、方阵问题的五大计算公式:
(1)方阵总数=最外层每边数目的平方;
(2)方阵最外一层总数比内一层总数多8(行数和列数分别大于2);
(3)方阵最外层每边数目=(方阵最外层总数÷4)+1;
(4)方阵最外层总数=[最外层每边数目-1]×4;
(5)去掉一行、一列的总数=去掉的每边数目×2-1。
四、方阵问题的巧解:
【例题1】 阅兵队伍排成一个4层空心方阵,最内层人数是28人,这支阅兵队伍有多少人?
A.69 B.52 C.127 D.160
【答案】D。解析:已知方阵每层数目之间相差8,最内层人数是28,第二层到第四层依次是36,44,52,所以28+36+44+52=160人,选D。
【例题2】 阅兵队伍排成一个4层空心方阵,最内层人数是28人,这支阅兵队伍有多少人?
A.69 B.52 C.127 D.160
【答案】D。解析:已知方阵每层数目之间相差8,最内层人数是28,第二层到第四层依次是36,44,52,所以28+36+44+52=160人,选D。
【例题3】 有绿、白两种颜色且尺寸相同的正方形瓷砖共400块,将这些瓷砖铺在一块正方形的地面上:最外面的一周用绿色瓷砖铺,从外往里数的第二周用白色瓷砖铺,第三周用绿色瓷砖,第四周用白色瓷砖这样依次交替铺下去,恰好将所有瓷砖用完。这块正方形地面上的绿色瓷砖共有( )块。
A.180 B.196 C.210 D.220
【答案】D。解析:利用总人数=单边人数的平方即N^2可知N^2=400,N=20,即最外圈绿色花盆=4x(20-1)= 76。根据相邻两层差8,可得出每层的花盆总数76,68,60,52,44,36,28,20,12,4.红色花盆总数=76+60+44+28+12=220。所以本题选D。
相关阅读:
点击分享此信息:
相关文章